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Abstract

It is known that the cycleability of lithium secondary batteries depends on both charge
and discharge current densities . This paper investigates the cycle life and lithium morphology
dependence on charge and discharge current densities . The amount of needle-like lithium
increases with decreases in discharge current density.The morphology of the needle-like
lithium leads to the formation of 'dead lithium' which plays no role in charge/discharge
cycles. �ocalized deposition and dissolution may be the reason for 'dead lithium' formation .
The decrease in cycle life with the increase in charge current density is also explained by
this mechanism . Furthermore, high rate discharge leads to the recombination of isolated
lithium which results in cycle life increase .

Introduction

The cycle life dependence of lithium secondary cells on both charge and discharge
current densities is well known and has been reported in several papers . The cycle
life of �i/MoS, increases when the discharge current density increases [1] . Similar
trends have been reported for �i/MnO 2 [2, 3] and �i/�iosMnO, [4, 5] cells, although
their cathode-active materials, organic electrolytes, capacities, charge current densities
and cycling voltage regions are all different. The cycle life dependence on charge
current densities has also been reported in �i/MoS2 and �i/�i0SMnO, cells. These
results suggest that the cycle life dependence on charge and discharge current densities
is caused by �i anode degradation. The mechanism of this degradation, however, is
still unclear although the high impedance failure of �i anodes was reported in these
earlier works.

The reduction in cycle life caused by anode degradation could be explained in
several ways:
(i) electrochemically-active �i reacts with electrolyte to form electrochemically-inactive
lithium [6] ;
(ii) metallic lithium is isolated in passivation film [7] ;
(iii) electrochemical features of passivation film cause high-impedance failure [1], and
(iv) the occurrence of a `soft short' [1] or electrical isolation of deposited lithium [8]
which is related closely to the morphology of the �i anode .

The authors tried to clarify the �i anode degradation from a morphological point
of view in connection with the previous work [8, 9, 10] . In this work, the cycle life
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and �i anode morphology dependence on both charge and discharge current densities
are discussed .

Experimental

Morphology observation with scanning electron microscopy (SEM)
Coin-type cells (23 mm diameter and .2 mm thick) were assembled using amorphous

V205 (a-V2O5) as the cathode-active material and �iAsF 6-ethylene carbonate (EC/2-
methyltetrahydrofuran (2-McTf3F) as the electrolyte [11] . These cells were disassembled
after several cycles and the morphology of the �i anode was observed using SEM .

In situ observation with optical microscopy
The setup and configuration of a test cell for the in situ observation of �i deposition

are shown in Fig. 1 . �ithium cells were assembled on a glass slide. �ithium was
deposited on a Ni cathode. The change in morphology was recorded with a video
recorder through an optical microscope and a camera . The video images were then
copied onto film with a film recorder . The whole process was conducted in a dry
atmosphere and the humidity was less than 1% .
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Fig. 1 . (a) Setup and (b) cell configuration for in situ observation .
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Results and discussion

Electrochemically-inactive lithium ('dead lithium) formation
In our previous work, we reported the observation of two types of �i deposited

from �iAsF 6-EC/2-MeTHF [8] . They were needle-like �i and particle-like �i. The
needle-like �i was thought to be 'dead lithium' because it remained on the electrodes
after anodic dissolution . The processes of particle-like �i formation and needle-like
�i isolation were also proposed as shown in Fig. 2. We believe �i deposition starts
with needle-like �i. Particle-like �i grows at the top . In the �i dissolution process,
first particle-like �i dissolves followed by needle-like �i . However, heterogeneous
dissolution results in �i which is electrically isolated from the electrode .

In situ observation was carried out to verify the proposed mechanism . Needle-
like �i showed growth like a proper whisker, which grows from the bottom [12] .
Particle-like �i growth was observed at the top of the needle-like �i and at its bending
point as shown in Figs . 3 and 4. These results suggest the intimate correspondence
with our proposed mechanism .

Change in morphology by varying discharge current density
The cycle life tends to increase with an increase in discharge current density,

which is independent of the cathode-active materials, organic electrolytes, cycling
capacities, charge current densities and cycling voltage regions, as mentioned previously .
The anode morphology was investigated in order to explain the current density
dependence on cycle life .

Figure 5 shows the morphology dependence on discharge current density . �i/a-
V2O5 cells were discharged at 0.2 mA/cm2 and at 3.0 mA/cm2. �ocalized �i stripping
occurred at a high discharge rate, but relatively delocalized �i stripping occurred at
a high discharge rate . Native surface films on �i foil, which consist probably of �i 2O,
�i,N, �i 2CO,, etc., and products of the reaction with organic electrolyte, may cause
these differences. Namely, current will be focussed in the relatively low impedance
part of native films during low rate discharge . This is because the overpotential induced
by constant current discharge may not be sufficient for �i to dissolve through the high
impedance part of native films . On the other hand, high overpotential which is sufficient
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Fig. 2 . Proposed mechanism of particle-like lithium formation and needle-like lithium isolation .
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Fig. 3. Photographs of particle-like lithium growth at the top of needle-like lithium .

Fig. 4. Photographs of particle-like lithium growth at the bending point of needle-like lithium .
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Fig. 5. Morphology dependence on discharge current density: (a) discharged for 9 .0 mA h
(0.2 mA/cm2), and (b) discharged for 9 .0 mA h (3.0 mA/cm 2 ) .



for the �i to dissolve from all parts of �i anode may be induced by a 3 .0 mA/cm2
discharge .

When the cells were charged at 0 .4 mA/cm2 after discharge, needle-like �i grew
in the cell discharged at 0.2 mA/cm2 as shown in Fig. 6. In contrast, particle-like U
grew in the cell discharged at 3.0 mA/cm2. In the charging procedure, �i deposition
was localized at the point from which �i was dissolved during the discharge . Therefore,
the actual charge current density would be higher in the �i anode discharged at 0 .2
mA/cm2 than in that discharged at 3 .0 mA/cm2 . The impedance or the passivation
film on �i stripped during the discharge may be lower than that of native films . This
result suggests that nonuniform stripping during discharge causes the nonuniformity
of the charge current density, resulting in the deposition of needle-like �i .

Figure 7 shows �i morphologies after the 5th and 10th discharge. Mossy needle-
like �i largely covers the anode in the cell discharged at 0.2 mA/cm 2. On the other
hand, no mossy �i was observed in the cell discharged at 3 .0 mA/cm 2. This mossy
needle-like �i is what was referred to earlier as `dead lithium' which reduces the cycle
life . These results indicate that morphological change is one of the factors which
reduces the cycle life at a low discharge current density .

In addition to the homogeneous dissolution resulting in particle-like �i deposition,
there is another advantage with high rate discharge. That is the recombination of
isolated �i with the electrode during discharge . Figure 8 shows the test cell configuration
for in situ observation. Isolated �i is positioned between two electrodes . Constant
current discharge and charge was provided using this half-cell . Morphological change
between the anode and the isolated �i was observed with an optical microscope as
before. A 0.5 mA discharge and charge operation was carried out as shown in Fig .
9. Figure 10 shows the growth of U dendrites from the isolated �i during discharge .
The dendrites connect the isolated �i with the �i anode. This phenomenon may occur
because of the voltage gradient between the �i anode and the isolated �i . Namely,
if there is sufficient voltage gradient, isolated �i would be at the potential of �i
deposition . Therefore, high current density discharge also leads to the recombination
of isolated �i which in turn results in cycle life increase .

Change in morphology by varying charge current density
The cycle life also tends to increase with a decrease in charge current density,

as mentioned above . Figure 11 shows the morphology dependence on charge current

3 1

(a)

	

101an

	

(b)

	

10 l=

Fig. 6. Influence of discharge current density on morphology during charge : (a) charged for
2.4 mA h at 0.4 mA/cm 2 after being discharged for 9 .0 mA h at 0.2 mA/em2 , and (b) charged
for 2.4 mA h at 0.4 mA/em2 after being discharged for 9 .0 mA h at 3 .0 mA/em2 .



32

current
collector (Ni) isolated �I

loth

	

10 Prig

	

0 h

	

10µm
(a)

	

(b)
Fig . 7. Morphology of lithium anode after 5th and 10th discharge : (a) discharge current
0.2 mA/cm2, charge current 0.4 mA/cm2; (b) discharge current 3.0 mA/cm2 , charge current
0.4 mA/cm2.
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Fig . 8. Test cell configuration for in situ observation of the recombination of isolated lithium .

density. �i/a-V205 cells were discharged at 3 .0 mA1cm2 and then charged at 0.5 and
1.5 mA/cm 2 , respectively. Needle-like �i morphology was observed at a high current
density. In contrast, particle-like �i was observed at a low current density .



Charge Discharge

Fig. 10. Recombination of the isolated lithium with the anode, see Fig . 9 .

Time / min
Fig . 9 . Profile of voltage and current : (-) voltage, (---) current. The numbers in the Fig .
show the point of which the photographs in Fig . 10 were taken .
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Fig . 11 . Morphology dependence on charge current density: (a) charged for 1 .5 mA h at
0-5 mA/cm' after being discharged for 9 .0 mA h at 3 .0 n A/em', and (b) charged for 1 .5 mA
h at 1.5 mA/cm' after being discharged for 9 .0 mA h at 3 .0 tnA/cm' .
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Fig- 12 . Morphology of lithium anode after the 5th and 10th discharge : (a) discharge current
3.0 mA/cm2 , charge current 04 mA/cm'; (b) discharge current 3 .0 mA/cm2, charge current
1.5 mA/cm'.

Needle-like �i gradually covered the �i electrode when the cells were cycled at
a high charge rate . Figure 12 shows �i anode morphology after the 5th and 10th
discharge at 0.5 and 1.5 mA/cm2 , respectively. The discharge rate was 3 .0 mA/cm 2.
The decrease in cycle life with an increase in charge current density would thus be
explained by the `dead lithium' formation which was discussed in the section on
discharge current density dependence .



Conclusion

Cycle life dependence on both charge and discharge current densities was in-
vestigated by studying the morphological change in the �i anode . Needle-like �i
deposition which leads to `dead lithium' formation increases when the discharge current
density decreases. A high rate discharge also leads to the recombination of isolated
�i resulting in cycle life increase . Needle-like U deposition increases when the charge
current density increases. The results suggest that the morphology of the �i anode is
an important factor leading to an understanding of cycle life degradation .
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